
New Document Storage in Calc

Kohei Yoshida

<kohei.yoshida@collabora.com>

Topics

●New document storage
●Difference from old storage
●mdds::multi_type_vector

●Formula groups
●OpenCL interpreter

New Document Storage

Old document model

ScDocument

ScTable

ScValueCell

ScStringCell
ScEditCell

ScFormulaCell

ScNoteCell*

ScColumn

ScBaseCell

Script type (1 byte)

Text width (2 bytes)

Broadcaster (8 bytes)

Cell type (1 byte)

New document model

ScDocument

ScTable

OUString block

double block

EditTextObject block

ScFormulaCell block

ScColumn

Broadcaster

Text width
Script type

Cell value

New document model

Why new document model?

●Smaller memory footprint.
●Better locality of reference.
●Faster iteration of cells.
●Allow vectorized calculations via SIMD and/or GPU.

Having said that...

It was a heck of a job.

●By far the largest refactoring I have ever done. Ever.
●Every corner of Calc's code touches cells; all code that touches

cells had to be reworked.
●Exposed many old hacks for old model.

It's all over now!
Minus regressions.

What Data Structure Is Used

mdds::multi_type_vector

● Used in new document storage.
– Cells

– Broadcasters

– Text widths / script types

● C++ template from mdds library
http://code.google.com/p/multidimalgorit
hm/

● One year for the initial version.
● Several iterations of improvement.

http://code.google.com/p/multidimalgorithm/
http://code.google.com/p/multidimalgorithm/

Empty slots

Block array
● block size
● block type
● pointer to data array

Data array
● vector

● Storage of unlimited number of types in single
logical array.

● Contiguous elements of same type in contiguous
memory space.

mdds::multi_type_vector

Some Code Examples

Putting Data In

Scenario

Insert a whole bunch of numeric values.
The values are stored contiguously.

1.51778 sec

1.42703 sec

0.111298 sec

Finished!

Finished!

Repeated single insertions

Single array insertion

Prefer array insertion over
repeated single insertions.

Scenario

Insert a whole bunch of numeric values.
But values are only to be set at logical

even positions. Cells at the odd positions
will be left empty.

38.2751 sec

0.03113 sec

Using a position hint indicator
helps avoid the cost of block
position lookup.

Repeated insertion of alternating empty and
non-empty cells.

Each insertion creates two
new blocks.

The more blocks the slower
the block position lookup.

Accessing Data

Scenario

Iterate through the entire container and
add all numeric values. Containers
contain numeric cells at odd row

positions.

18.9474 sec

0.00056 sec

What's in block iterator node?

Scenario

Iterate through the container
above the 100th element. Check

every 3rd element, and if it's
numeric, add it to the total.

6.49647 sec

No code example for iterating
through blocks.

too much work just to keep track of
logical element positions.

0.0008 sec

What's a position object?

The takeaways

●Prefer one-step array insertion over repeated individual value
insertions.

●Always use block iterators as position hints if you do individual
value insertions in loop.

●Know what's in a block iterator: type, position, size, and data.
●Know what a position object is, and use it judiciously.

Enough with code...

Formula Groups

What's a formula group?

Group

➢ Group of adjacent formula
cells whose formula tokens are
identical.

➢ In the vertical direction
only.

➢ One token array for the
whole group for reduced
memory usage (a.k.a.
shared formula).

Group

Effect of shared formula

Non-shared Shared
0

50

100

150

200

250

300
262

184

H
e

a
p

 m
e

m
o

ry
 (

M
B

)

http://kohei.us/2013/08/15/shared-formula-to-reduce-memory-usage/

Why formula groups?

Number Formula* =Number

● Allows vectorized
calculation via GPU.

● Massively reduces nodes
in dependency graph.

OpenCL Interpreter

OpenCL Interpreter

●Vectorized group calculation.
●OpenCL API - public standard http://www.khronos.org/opencl/
●Supported by AMD, NVIDIA, and Intel GPU's.
●Parallel computation of formula groups.
●Code funded & co-developed by

http://www.khronos.org/opencl/

Enable OpenCL Interpreter

UI and OpenCL device detection by
Markus Mohrhard.

Current issues

● Still only effective on limited use cases.
● Stability improvement.
● Unit test ?
● More functions to cover.
● Very promising.

Thanks for listening!

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40

