

Regular Releases Are Wrong
Roll For Your Life!MicroOS Release Engineer

Richard Brown

rbrown@opensuse.org

sysrich on Freenode.net

@sysrich

Who am I?
openSUSE contributor since it began
SUSE employee since 2013

Passionate advocate of rolling releases

Linux Distribution Engineer in Future Technology Team
focusing on two rolling distributions

openSUSE MicroOS – Single Purpose Self Administering OS
openSUSE Kubic – MicroOS with Kubernetes & Containers

Disclaimers
● This is an opinionated presentation
● I hold very strong opinions on this topic
● They are my views and not that of my

employer or any Project/Group I am/have
been affiliated with

● It’s OK if you do not agree with my view

Upstreams Change Fast
Glibc – New version every 6 months
Linux Kernel – New version every 3 months
Kubernetes – New version every 3 months
SaltStack – New version every 3-6 months
Uyuni – New version every 1-2 months
Ceph – New version every 1-2 months
Podman/skopeo/buildah – New version all the time
Cloud Foundry – New versions all the time

Short Upstream Support
Kernel Stable Releases – 4 months
Kernel LTS Releases – 6-7 years
Kubernetes – 1 year (before v1.19, was 9 months)
SaltStack – 1.5 years (feature freeze after 6 months)
Ceph – 2 years

We Have More Upstreams
● Leap
● Tumbleweed
● Uyuni
● MicroOS
● Kubic

We Have Larger Upstreams

Source: phoronix.com “The Linux Kernel Enters 2020 At 27.8 Million Lines In Git But
With Less Developers For 2019”

Kubernetes Growing Also

Regular Releases Mean Well
● “How to condense thousands of moving

packages from thousands of different
people into something which other people
can use?”

Change is Dangerous
● You can’t break anything if you don’t

change it
● But even regular releases need a LOT of

change
● Minimal changes are safer, right?

Slow Is Not Safer

Slow Doesn’t Work
● SUSE Linux Enterprise 15 has shipped over

13780 changed packages so far, including
over 2791 package version changes across
a codebase of ~3500 packages.

● That is NOT including the 10000+
packages from openSUSE PackageHub.

Slow Isn’t Where We Want To Be

Slow Isn’t More Sustainable
Every upstream is getting bigger

We are getting more upstreams

Every divergence/freeze from upstream
produces more work for us

We aren’t growing fast enough

Slow Undermines Open Source
Linus’s Law states “given enough eyeballs,
all bugs are shallow.”

Regular Releases throw most of the eyes
away

Doesn’t that make more of our bugs deep?

Partially Slow is Totally Broken
Tumbleweed was originally started by Greg Kroah-
Hartman in 2010

Rolling base atop regular openSUSE releases

Focus on Kernel, KDE, GNOME and some desktop Apps

Would overwrite/supersede packages from regular release

”Reset-to-zero” every regular release

Partially Slow is Totally Broken
“Partially Rolling” was painful for both users and engineers

Constant breakage over the growing chasm between the
‘stable’ base and rolling top

Ad-hoc tinkering/superseding of the ‘stable’ base stops it
being stable

“Reset-to-zero” rebase to a new stable base every 8 months
was brutally disruptive for all users

Build Together, Test Together
Modern Tumbleweed evolved out of efforts to stabilise
openSUSE:Factory

Build all packages together, rebuild dependency tree as
new/updated packages added (leveraging OBS)

Test all relevant use cases, focusing on the way users use
them (leveraging openQA, LTP, and various release bots)

Sustainable engineered and usable for it’s target audience for
6 years running

Containers Aren’t Magic
eg. AppImage
– Portable Software format, containing binaries and

required libraries in an executable archive
– Promises “Linux apps that run anywhere”
– Used by various upstreams to distribute their own binaries

Containers Aren’t Magic
AppImages don’t run everywhere

Master
openSUSE Kubic

Kubelet

Container Runtime

Control Plane

Node
openSUSE Kubic

Kubelet

Container Runtime

Containers

Node
openSUSE Kubic

Kubelet

Container Runtime

ContainersNode
openSUSE Kubic

Kubelet

Container Runtime

Containers

Containers Still Depend On Their Hosts

Lesson Learned – Roll With Containers
Distribution neutral/system isolated containers is a myth

Building, testing & releasing containers in alignment
with traditional RPM packages is essential

Containers can impose ‘unfair’ dependencies on the host
OS that traditional packaging cannot model or resolve

Well orchestrated building, testing & releasing can
enable for some ‘drift’ between containers and host

The Rolling Engineering Axiom

“In order to move ANYTHING quickly,
you need to be able to move
EVERYTHING quickly”

Rolling Has Real Benefits
Benefit as much as possible from
upstreams, both for distro builders and
our users

More easily contribute back to upstreams

Reduce double-work, retesting, and
backports requiring backports requiring
backports...

But Change Is Still Scary
Not everyone wants to move at the same
speed as every other

Not every upstream is aligned with their
related and dependent codebases

Unsafe at Any Speed?
Full speed ahead is not the only speed

Tumbleweed has proven processes for releasing at the
pace of upstream/contributions

Maybe we need other rolling releases that strike a better
balance between keeping up with upstreams and not
imposing too much change on our users

Change Less – Use MicroOS
openSUSE MicroOS is a predictable &
immutable. It cannot be altered during
runtime.

MicroOS is reliable with automated
updates and automated recover from
faulty updates.

MicroOS is small with only what is needed
to run it’s “one job”. Applications/Services
are expected to be Containerised or
Sandboxed.

My MicroOS Life

Is Everyone Doing Everything Wrong?
● RPM packaging is awesome for building,

but painful for users
● Why do we still make users deal with

packages?
● What would a ‘Container-first’ Linux look

like?

Containers Only - The Next Step?
● Developers & Sysadmins don’t want to care

for packages
● They want their services and the

languages/libraries they care about
● Containers give us a chance to redefine how

we offer our stuff to them while reduce
what we need to care about for the OS

COOL – Container Only Operating Layer
● Why not have something like MicroOS but

with a large predefined library of
containers ready for use?

● Runtimes – Language libs+toolchain
bundled together (eg. Python, Golang, etc)

● Apps – Ready to go service containers (eg.
Apache, MariaDB, DHCP, etc)

COOL Apps
Updating services would be as easy as
– podman pull cool/app/apache:latest

Building your own service based on our
containers would be as simple as
– buildah from cool/app/apache:latest

COOL Runtimes
Any user could pull a runtime as easily as
– podman pull cool/runtime/python:3

Any developer could base their container on a
runtime as easily as
– buildah pull cool/runtime/golang:latest

COOL Build Ideas
● COOL Apps & Runtimes could be built using OBS

Subprojects
– COOL:Runtimes:Python:$VER
– COOL:Runtimes:Python:$VER:Apps

● All built together using OBS but able to diverge a little
because we all know it will only be delivered via
containers

● Containers then tested & released to registry.opensuse.org
using a much simpler structure for users

What about the Desktop?
MicroOS Desktop is MicroOS where the ”one job”
is running as a Desktop.

MicroOS Desktop provides only a minimal base
system with a Desktop Environment and Basic
Configuration Tools ONLY.

All Applications, Browsers, etc are provided by
FlatPaks from FlatHub.

Go To This Talk Too

	Title Slide
	Light Slide
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Focus Slide

