
LibreOffice oss-fuzz, 
crashtesting, coverity



Overview
• Oss-Fuzz
• Crashtesting
• Coverity



Oss-Fuzz



Overview
● Continuous Fuzzing of our import filters

● Thanks to Google we get to use their infrastructure and resources



Configuration
● Build remotely on google’s side

– Calls our bin/oss-fuzz-build.sh

● 45 fuzzer targets in vcl/workben

● Each one is built with
– libfuzzer + asan
– libfuzzer + ubsan
– afl + asan
– honggfuzz + asan

=> 180 total



Configuration
● No dynamic libraries allowed

– A serious pain for us
– distro-configs/LibreOfficeOssFuzz.conf
– Reuse --disable-dynamic-loading intended for iOS
– Individual fuzzers are unfortunately v. large

● Run without config layer
– Hardcoded suitable default for –enable-fuzzers
– utl::ConfigManager::IsAvoidConfig()

● https://dev-www.libreoffice.org/corpus/
– Contains our seed corpuses for 60 file formats
– 15 are dtardons and co’s dlplib filters and are fuzzed separately 

https://dev-www.libreoffice.org/corpus/


Oss-Fuzz Reports per Year
• Over 1100 issues over four years
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• More than one a day in 2017 and 2018
• 113 this year to date, estimate 142 by end of year

• This years uptick due to a new route from sftfuzzer into old untested code



What a report looks like

Auto minimize



Sample ubsan bug
● Buggy change, the unsigned 

short is promoted to int, 
undefined behavior in 
addition

● Change back to a larger 
unsigned type



Timeouts
● Sometimes timeout is genuine infinite loop

– More often it’s just slow

● OssFuzz will report a maximum of one timeout per fuzzer

● Fix a timeout, another typically gets reported soon after

● Limit input size with a .options files
[libfuzzer]
max_len = 65536

● Some file formats have ~infinite decompression support
– Tiny input can legitimately provide mega data to process
– Examine FUZZ_MAX_INPUT_LEN (from .options) at runtime and limit to 

some factor of that



OOM
● Limit memory usage with

setenv("JPEGMEM", "768M", 1);
setenv("SC_MAX_MATRIX_ELEMENTS", "60000000", 1);
setenv("SC_NO_THREADED_CALCULATION", "1", 1);

● Pre-allocating buffers depending on potentially lying headers
– Often a known relationship between remaining length of the file and the 

amount of data that it can produce
– So short reads can be predicted before buffer allocation

● GIF’s have a max compression of ~1:2560, 



Current Open Bugs
● 10 open bugs

– All Timeouts



CrashTesting



Overview
● Document Corpus

– Most scraped out of various bugzilla instances with
get-bugzilla-attachments-by-mimetype

– 116,200 files

● Import them all
– With Markus Mohrhard’s test-bugzilla-files

● For many formats, then export to multiple formats

● Reimport exported output

● Report failed imports/exports

● Backtraces extracted from coredumps



New Setup
● New Hardware this year

– Next day results
– Vs ~3 days with old setup

● Thanks to Adfinis



12 Months of Importing
● Persistent <10 cluster of failures
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12 Months of Exporting
● Large jumps as regressions detected and fixed
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Coverity



Configuration
● Build locally with coverity’s tooling

● Outputs a big blob which we upload to their server which does 
the analysis

● https://scan.coverity.com/projects/libreoffice

● Project settings are open, no need to apply to be a “member” to 
see the findings

● Contemporary coverity scans both C++ and Java

● Coverity currently supports C++17, but not C++2a
– patch configure.ac to not try c++2a for the coverity run

● We only scan LibreOffice, not dependencies
– distro-configs/LibreOfficeCoverity.conf
– So no ignored “external” category anymore

https://scan.coverity.com/projects/libreoffice


Example warning
● uninit_member

– If a class initializes none of its members in its ctors there is no warning as 
its assumed to be intentional

– If it initializes most of them, it warns about the uninitialized ones
– A common mistake is with a class with multiple ctors, new member gets 

added and initialized in one ctor but not the other

warning type



Pattern for waiving warnings
● An  issue can be marked as a false positive or intentional in the web UI

– But that only affects that coverity instance. Red Hat runs another one f.e.
– If the code changes enough coverity will loose the ability to detect its the same code 

and reissue the warning

● INTENTIONAL pattern
– // coverity[WARNING]  - OPTIONAL_COMMENT
– WARNING is the text before the : in the report 
–

–

–

● FALSE POSITIVE pattern
– // coverity[WARNING : FALSE] - OPTIONAL_COMMENT



Pattern to indicate program exit
● // coverity[+kill] indicates that the annotated function is intended to 

kill the program

–

–

–

● We use this in cppunit to indicate that that Asserter::fail is intended 
to exit the program. In reality it throws a deliberately unhandled 
exception which would be warned about otherwise

● Note that –enable-assert-always-abort is active for our coverity 
builds so failing asserts terminate program flow so coverity warnings 
about “impossible” situations are resolvable by adding appropriate 
asserts



Tainted data
● Coverity detects common byteswapping techniques as indicating 

that data is probably untrusted tainted data

● Very helpful for our general file format parsing, but not for our own 
legacy registry data format

● __coverity_tainted_data_sanitize__ can be used to sanitize the data



Tainted data
● Validating untrusted data

– A simple sanity test of tainted example



Outstanding vs Fixed defects

Gap between
requiring C++17

and coverity support



Coverity Stats 2020
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