
LibreOffice oss-fuzz,
crashtesting, coverity

Overview
• Oss-Fuzz
• Crashtesting
• Coverity

Oss-Fuzz

Overview
● Continuous Fuzzing of our import filters

● Thanks to Google we get to use their infrastructure and resources

Configuration
● Build remotely on google’s side

– Calls our bin/oss-fuzz-build.sh

● 45 fuzzer targets in vcl/workben

● Each one is built with
– libfuzzer + asan
– libfuzzer + ubsan
– afl + asan
– honggfuzz + asan

=> 180 total

Configuration
● No dynamic libraries allowed

– A serious pain for us
– distro-configs/LibreOfficeOssFuzz.conf
– Reuse --disable-dynamic-loading intended for iOS
– Individual fuzzers are unfortunately v. large

● Run without config layer
– Hardcoded suitable default for –enable-fuzzers
– utl::ConfigManager::IsAvoidConfig()

● https://dev-www.libreoffice.org/corpus/
– Contains our seed corpuses for 60 file formats
– 15 are dtardons and co’s dlplib filters and are fuzzed separately

https://dev-www.libreoffice.org/corpus/

Oss-Fuzz Reports per Year
• Over 1100 issues over four years

2017 2018 2019 2020
0

50

100

150

200

250

300

350

400

450

500

oss-fuzz: Last 4 Years

Projected

Filed

Year

R
e

p
o

rt
s

• More than one a day in 2017 and 2018
• 113 this year to date, estimate 142 by end of year

• This years uptick due to a new route from sftfuzzer into old untested code

What a report looks like

Auto minimize

Sample ubsan bug
● Buggy change, the unsigned

short is promoted to int,
undefined behavior in
addition

● Change back to a larger
unsigned type

Timeouts
● Sometimes timeout is genuine infinite loop

– More often it’s just slow

● OssFuzz will report a maximum of one timeout per fuzzer

● Fix a timeout, another typically gets reported soon after

● Limit input size with a .options files
[libfuzzer]
max_len = 65536

● Some file formats have ~infinite decompression support
– Tiny input can legitimately provide mega data to process
– Examine FUZZ_MAX_INPUT_LEN (from .options) at runtime and limit to

some factor of that

OOM
● Limit memory usage with

setenv("JPEGMEM", "768M", 1);
setenv("SC_MAX_MATRIX_ELEMENTS", "60000000", 1);
setenv("SC_NO_THREADED_CALCULATION", "1", 1);

● Pre-allocating buffers depending on potentially lying headers
– Often a known relationship between remaining length of the file and the

amount of data that it can produce
– So short reads can be predicted before buffer allocation

● GIF’s have a max compression of ~1:2560,

Current Open Bugs
● 10 open bugs

– All Timeouts

CrashTesting

Overview
● Document Corpus

– Most scraped out of various bugzilla instances with
get-bugzilla-attachments-by-mimetype

– 116,200 files

● Import them all
– With Markus Mohrhard’s test-bugzilla-files

● For many formats, then export to multiple formats

● Reimport exported output

● Report failed imports/exports

● Backtraces extracted from coredumps

New Setup
● New Hardware this year

– Next day results
– Vs ~3 days with old setup

● Thanks to Adfinis

12 Months of Importing
● Persistent <10 cluster of failures

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73
0

10

20

30

40

50

60

70

Import Failures

Import

Build

F
a

ilu
re

s

12 Months of Exporting
● Large jumps as regressions detected and fixed

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73
0

50

100

150

200

250

300

Export Failures

Export

Build

F
a

ilu
re

s

Coverity

Configuration
● Build locally with coverity’s tooling

● Outputs a big blob which we upload to their server which does
the analysis

● https://scan.coverity.com/projects/libreoffice

● Project settings are open, no need to apply to be a “member” to
see the findings

● Contemporary coverity scans both C++ and Java

● Coverity currently supports C++17, but not C++2a
– patch configure.ac to not try c++2a for the coverity run

● We only scan LibreOffice, not dependencies
– distro-configs/LibreOfficeCoverity.conf
– So no ignored “external” category anymore

https://scan.coverity.com/projects/libreoffice

Example warning
● uninit_member

– If a class initializes none of its members in its ctors there is no warning as
its assumed to be intentional

– If it initializes most of them, it warns about the uninitialized ones
– A common mistake is with a class with multiple ctors, new member gets

added and initialized in one ctor but not the other

warning type

Pattern for waiving warnings
● An issue can be marked as a false positive or intentional in the web UI

– But that only affects that coverity instance. Red Hat runs another one f.e.
– If the code changes enough coverity will loose the ability to detect its the same code

and reissue the warning

● INTENTIONAL pattern
– // coverity[WARNING] - OPTIONAL_COMMENT
– WARNING is the text before the : in the report
–

–

–

● FALSE POSITIVE pattern
– // coverity[WARNING : FALSE] - OPTIONAL_COMMENT

Pattern to indicate program exit
● // coverity[+kill] indicates that the annotated function is intended to

kill the program

–

–

–

● We use this in cppunit to indicate that that Asserter::fail is intended
to exit the program. In reality it throws a deliberately unhandled
exception which would be warned about otherwise

● Note that –enable-assert-always-abort is active for our coverity
builds so failing asserts terminate program flow so coverity warnings
about “impossible” situations are resolvable by adding appropriate
asserts

Tainted data
● Coverity detects common byteswapping techniques as indicating

that data is probably untrusted tainted data

● Very helpful for our general file format parsing, but not for our own
legacy registry data format

● __coverity_tainted_data_sanitize__ can be used to sanitize the data

Tainted data
● Validating untrusted data

– A simple sanity test of tainted example

Outstanding vs Fixed defects

Gap between
requiring C++17

and coverity support

Coverity Stats 2020

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

