
Interoperable
Office
Collaboration

Svante Schubert

Svante.Schubert@gmail.com

TIRANA | 26 Sept. 2018

Question:

Will Libreoffice in 50 years

be still our favorite editor?

Answer:

Depends if LibreOffice will support
the state of the art features in 50 years!

Bold Claim:

“Collaboration”
the most critical feature
in our connected world

Everyone of us has at two
computer at least! -- laptop and

smartphone!

Feature:

Collaborative real-time editor (2 modes)

1) Real-Time Mode (e.g. Etherpad, Google Docs, etc.)
Users can edit the same document simultaneously.

2) Non-Real-Time Mode (similar revision control systems)
Users edit a copy of document and merge later.

https://en.wikipedia.org/wiki/Collaborative_real-time_editor

Feature:

Collaborative real-time editor (2 modes)
In the end all “copies” are the same!

1) Real-Time Mode
Automatic fix of merge conflicts! (for convenience).

2) Non-Real-Time Mode
Merge conflicts have to be resolved by the user!

Merge conflict like I am editing a
cell, YOU delete the table!

Feature:

Collaborative real-time editor (2 modes)

1) Real-Time Mode
Good for working with a group of trusted members.

2) Non-Real-Time Mode
Users like to be in control of all changes.
Legal departments of two companies collaborating.

Feature:

Collaborative real-time editor (2 modes)

1) Real-Time Mode
Comes first to mind!

2) Non-Real-Time Mode
Often forgotten! But IMHO most money is here!

How do real-time editors work?

- No documents are dispatched!
Dispatching documents is stupid!!!
As stupid as developers sending software repos!

- Sending changes / operations / differences / DIFFs!
Best not text/syntax based, but semantic changes!

The most important question in collaboration:
“What have you changed in the doc?”

No way to answer in an interoperable way!
Only standards for file formats exist!
No standard for file changes!

Today‘s Problem

How the Future might look like…

Interoperable Collaboration
Exchanging ODF Changes

4th paragraph new

ODF Application ODF Application

4th paragraph new

ODF Application

Multile users using
different ODF
applications exchanging
no longer docs, but
high level user changes!
(standardized by OASIS

being interoperable)

Interoperable Collaboration
Exchanging ODF Changes

ODF Application ODF Application
2nd paragraph blue

2nd paragraph blue

ODF Application

Interoperable Collaboration
Exchanging ODF Changes

4th paragraph new

ODF Application ODF Application
2nd paragraph blue

4th paragraph new2nd paragraph blue

ODF Application

Are ODF Changes
able to become a Standard?

ODF Changes are de-facto Standard...

As all office application I am aware of…

a) Know the same user objects (table, paragraph..)

b) Allow similar user changes (add, modify, delete …)

Just specifying what is already on
our minds…

How about a Prototype
on ODF Changes?

ODT Changes
sponsored by PrototypeFund ODF Web

Editor
using

changes

ODF
Toolkit

Sequencer
& Merger

ODT
Document

ODF Web
Editor
using

changes

Information
System

See https://github.com/svanteschubert/odftoolkit/tree/odf-changes/odfdom

Maps ODT to an equivalent sequence
of user changes. Like user typed ODT
from top to buttom. In addition, it
merges new changes into ODT.
Production ready see GitHub below!

https://prototypefund.de/project/documents-for-democracy/
https://github.com/svanteschubert/odftoolkit/tree/odf-changes/odfdom

How about a Prototype
an end user can use!?!

Interoperable Collaboration
Exchanging ODF Changes

ODF Application ODF Application

ADD „Hello “ @3/1ADD „Hello “ @1/1

ODF Feature Bridge

Vim still needs a way
to record text
position change &
create operations!

„Feature bridge“ adds/removes changes of unsupported
ODF features and adopts positions (OT), see above for LO
has same change at 3rd, while VI at 1st position.

Full Semantic Tree
Exchanging ODF Changes

NOTE:
- VIM does not „see“ the table nor the image!
- The „W“ character is for LibreOffice at position

„3/1“
- The „W“character is for VIM at position „1/1“

Semantic tree:
The underlying XML tree is being mapped to
larger logical pieces represented as Semantic
Tree. Changes refer to those user objects.

Vim is exciting!
More thrills pls!!

Interoperable Collaboration
Exchanging ODF Changes

CKEditor 5
ODF Application

ODF Application

ADD „Hello“ @3/1ADD „Hello“ @3/1

ODF Feature Bridge

„Feature bridge“ not only adds/deletes changes, but
maps them to other „change dialect“.
(more detailed view on next 2 slides)

Proof of Concept

Load ODF Text into CKEdit5
Exchanging ODF Changes

CKEditor 5
web editor

Changes

Change
Mapper

ODT
Document ODF

Sequencer

Changes

ODF Sequencer
The ODT is mapped to an
equivalent list of user changes, as if
a user had written the document
from top to bottom.
(production ready)

https://github.com/svanteschubert/odftoolkit/tree/odf-changes

Proof of Concept

Save ODF Text by CKEdit5
Exchanging ODF Changes

CKEditor 5
web editor

Changes
Change
Mapper

ODT
Document ODF

Merger

Changes

ODF Merger
The new ODT user changes are
merged into the document they are
derived from.
(production ready)

https://github.com/svanteschubert/odftoolkit/tree/odf-changes

Proof of Concept misses from CKEdit5:

a) Loading “CKEdit5 changes” from JSON
b) Saving new changes as “CKEdit5 changes” in JSON

Could someone help me with this, pls?!?
Thx in advance & cheers, Svante

Resources on CKEdit5 Changes

- here you will find all operations, with the inline documentation in the
code

- here is the current version of the transformation (OT) code

- here you will find the engine debug plugin, which might be useful for
debugging your code; all you need to do is to enable this plugin the same
way you enable any other plugin and you should get some additional
debug methods

- here you will find Operation Replayer; CKSource use it for debugging
purposes to recreate the state of the model based on the recorded
operation history (AFAIK not often recently used by CKSource)

- using "apply operation" event and method you should be able both
record all operations applied to the document and apply your operations

https://github.com/ckeditor/ckeditor5-engine/tree/master/src/model/operation
https://github.com/ckeditor/ckeditor5-engine/blob/master/src/model/operation/transform.js
https://github.com/ckeditor/ckeditor5-engine/blob/master/src/dev-utils/enableenginedebug.js
https://github.com/ckeditor/ckeditor5-engine/blob/master/src/dev-utils/operationreplayer.js
https://ckeditor5.github.io/docs/nightly/ckeditor5/latest/api/module_engine_model_model-Model.html#event-applyOperation

What we learned so far:

1) Dispatching semantic changes is most efficient..
- Changes are mandatory for merging
- No longer heuristics required to find changes
- Semantic provides best interoperability

2) Changes perfect to bridge different feature sets of applications

New benefits (1/2)

- Save using Changes:
- No Data loss by “Filters” overwriting unknown features
- Faster, as only new changes are merged

- Transparency - No fear of incidental overwriting data
- e.g. famous author receives change-request from reader

Key example: The read-only ODT of the
famous author is accessible by changes
counting positions. If instead we would
use explicit IDs for position it would
require to have an ID on all possible
referenceable element blowing up the
document size with IDs (boilerplate).
Convention over configuration!

New benefits (2/2)

- Run Time API across applications (based on semantic tree)
- Browsers have Run Time API by W3C DOM
- Semantic Tree is like a typed DOM ;-)

- Trustworthy automated feature tests
Now: “Load doc” & “save doc”
No proof, e.g. an array would support all ODF features

Future: “Load doc”, “change feature” & “save doc”

Q: ODF Run Time API?
What is it good for?

A:Take a look at the browsers!

A: Interoperable Macros, similar JavaScript in Browsers!

Out of the box testing:

Documentation on feature support:

https://caniuse.com/

ODF app comparison based on features:

Further benefits (1/2)

- Not only identifying the feature of applications:
Also possible to identify the
features of customer documents

Further benefits (2/2)

- Git support for ODF documents
Overwrite GIT using semantic diffs instead of line based diffs.
Standardized ODF changes the result of a
comparison of two document!
Merge will be so easy!!

Before you can understand:
“Miracle of Merge”…

BASIC
TECHNIQUES

The 1 x 1 of
Changes / Operations

One Document –

Many ways to create it…

„ABC“
Final

Document

One Document –

Many ways to create it…

„ABC“

ADD „A“ @1

„A“

Final
Document

User
changes

Current
Document

One Document –

Many ways to create it…

„ABC“

ADD „A“ @1
ADD „B“ @2

„AB“

Final
document

Current
document

User
changes

Timeflow
of changes

One Document –

Many ways to create it…

„ABC“

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

„ABC“

One Document –

Many ways to create it…

„ABC“

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

ADD „C“ @1

„C“

Different user
changes

One Document –

Many ways to create it…

„ABC“

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

ADD „C“ @1
ADD „B“ @1

„BC“

One Document –

Many ways to create it…

„ABC“

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

ADD „C“ @1
ADD „B“ @1
ADD „A“ @1

„ABC“

One Document –

Many ways to create it…

QUESTION:
How transforming one into the other?🤔

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

ADD „C“ @1
ADD „B“ @1
ADD „A“ @1

„ABC“

One Document –

Many ways to create it…

„ABC“

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

ADD „C“ @1
ADD „B“ @1
ADD „A“ @1

Move C change
from top to

bottom

One Document –

Many ways to create it…

„ABC“

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

ADD „B“ @1
ADD „C“ @2
ADD „A“ @1

Position of C changes
as B was inserted now
earlier, when the two

changes are being
switched!

One Document –

Many ways to create it…

„ABC“

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

ADD „B“ @1
ADD „A“ @1
ADD „C“ @3

One Document –

Many ways to create it…

„ABC“

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

ADD „B“ @1
ADD „A“ @1
ADD „C“ @3

Move B change
from top to

middle

One Document –

Many ways to create it…

„ABC“

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

Now both list
of changes are

identical!

We might call
the blue list
normalized!

Change Deletion

„ABC“

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

Can we delete B by
just removing the

change?

Change Deletion

„ABC“

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

ADD „A“ @1
ADD „C“ @3

NO! A gap is in the
positions, which is

not allowed!

Change Deletion -

Only remove top (last) change!

„ABC“

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

ADD „A“ @1
ADD „B“ @2
ADD „C“ @3

B not on top, not the
last change being
made, therefore B

influences C

Change Deletion -

Only remove top (last) change!

„ABC“

ADD „A“ @1
ADD „C“ @2
ADD „B“ @2

ADD „A“ @1
ADD „C“ @2
ADD „B“ @2

B last change,
influences to C
were removed

by OT (see URL)

OT:

http://www.codecommit.com/blog/java/understanding-and-

applying-operational-transformation

http://www.codecommit.com/blog/java/understanding-and-applying-operational-transformation

Change Deletion -

Only remove top (last) change!

„AC“

ADD „A“ @1
ADD „C“ @2

ADD „A“ @1
ADD „C“ @2
ADD „B“ @2
DEL „B“ @2

Add inverse
operation and

keep all changes.

Removes B and
keep changes
normalized.

The Miracle
of Merge

Merging

ADD „Hello “ @1 ADD „World “ @1
USER A USER B

SERVER „“

„User A“ works on
a branch (similar

GIT branch
concept) offline

(e.g. sailing)

„User B“ works
over week-end
offline on own

„git-like branch“.
(e.g. woods)Server state of

ODT both user
branched from

Merging

ADD „Hello “ @1 ADD „World “ @1
USER A USER B

SERVER „“

Push!

„User A“, first in
office can PUSH

to server

Merging

ADD „World “ @1
USER A USER B

SERVER

ADD „Hello “ @1 „Hello “

ADD „Hello “ @1

Server state
being adapted
with branch of

„User A“

Merging

ADD „World “ @1
USER A USER B

SERVER

ADD „Hello “ @1

Error!!
Push!

„Hello “

ADD „Hello “ @1

„User B“ is not able to
PUSH! Similar to software

development with GIT
„User B“ has to PULL first!

Merging

ADD „World “ @1
USER A USER B

SERVER

ADD „Hello “ @1 „Hello “

ADD „Hello “ @1

Pull!
User B pulls the
change(s) being
added earlier by

„User A“ to its own
branch.

Merging

ADD „World “ @1
ADD „Hello “ @1

USER A USER B

SERVER

ADD „Hello “ @1 „Hello “

ADD „Hello “ @1

Changes of „User A“ had
happened BEFORE the

changes of „User B“ and
need to be moved to

start of the change list,
applying OT while

moving.

Merging

„Hello “

ADD „Hello “ @1
ADD „World “ @7

USER A USER B

SERVER

ADD „Hello “ @1

ADD „Hello “ @1

Position changes by OT
from 1 to 7 due to the

length of „Hello “

Merging

ADD „Hello “ @1
ADD „World “ @7

USER A USER B

ADD „Hello “ @1

SERVER

ADD „Hello “ @1 „Hello “

Push!

Now the new changes of
„User B“ can be pushed

as server is again on
same base

ADD „World “ @7

Merging

„Hello World “

ADD „Hello “ @1
ADD „World “ @7

USER A USER B

SERVER

ADD „Hello “ @1
ADD „World “ @7

ADD „Hello “ @1

NOTE:
If „User B“ would

have pushed first ODT
would be

„World Hello „

Q: How do we identify documents
(in GIT)?

A: Hash their Semantic Tree
not the Syntax!

Get rid of „ODF XML syntax“
changing noice, breaking
hashes identifying ODT

documents in GIT!!

Semantic tree:
The underlying XML tree is being
mapped to larger logical pieces
represented as Semantic Tree.
Changes refer to those user objects.

Q: How start the Collab feature in
LibreOffice?

Q: What is the
Minimum Viable Product (MVP)?

LO Collaboration (MVP)
Modern ping pong

ODF Application

document (signed)

*
ODF Application

NOTE:
Not the ZIP of the ODT is
being signed, but each
XML file within the ZIP

Like ancient wax seals, if you
would change the content
the seals break..

But what if someone would
like to suggest a change on a
signed document?

LO Collaboration (MVP)
Modern ping pong

changes (signed)

ODF Application

document (signed)

+*
ODF Application

- Suggested changes could be saved
within the ODT ZIP as a new file,
pointing to the content!

- By this the XML sign of the content.xml
file would not be broken!

- New file could be signed as well with the
signature of the responding user!

LO Collaboration (MVP)
Modern ping pong

changes (signed)

ODF Application

document (signed)

+*
changes (signed)+

ODF Application

- Initial author can still answer by also
saving new changes!

- Although all changes will be kept,
earlier suggested changes can be
removed by adding their inverse
change!

LO Collaboration (MVP)
Modern ping pong

changes (signed)

ODF Application

document (signed)

+*
changes (signed)+

changes (signed)+

ODF Application

- Authentication of every change of
any editor in document history is
being guaranteed!

When it is so cool,

why don’t we have it already?

ODF Changes based on

ODF XML, which is complex..

ODF XML Grammar
Hard to oversee

ODF 1.2 XML:

● 598 XML elements

● 1300 XML attributes

>18 tsd. lines

Very hard to read by
humans and to search

within!

ODF XML Grammatik
Hard to oversee

<define name="table-table">

<element name="table:table">

<ref name="table-table-attlist"/>

…

<optional>

<ref name="text-soft-page-break"/>

</optional>

<ref name="table-table-row"/>

ODF 1.2 XML:

● 598 XML elements

● 1300 XML attributes

>18 tsd. lines

Let‘s look only at the
<table:table> root
element and its children
in the ODF XML grammar.

ODF Grammar - Graph
Table root with children

Table root with
children part of
ODF grammar

loaded into
Graph DB and
visualized with

Gelphi

ODF Grammar - Graph
Table root with children

Zooming in,
red are the

attributes of
<table:table>

ODF Grammar - Graph
Cumbersome

Graph still complex
because based on the
Multi-Schema
Validators dumped
run-time model.
Let‘s refactor it by
Gremlin GraphDB
scripting.

ODF Grammar - Graph
SIMPLIFIED

2

SEQUENCE

text:soft-page-break

1

text:table-row

Same semantic as
slide before but
refactored for
better human
understanding

NOTE:
Graph DB allows queries as „can a
<text:p> paragraph element be nested,
find out far easier and reproduciable
instead of looking up 18k of lines of
grammar.

GOAL & VISION (1/2)

a) Define additional ODF Change info!
b) Ease access to ODF XML grammar via

Graph DB

GOAL & VISION (2/2)

c) From above: Generate source code ->
ODF RunTimeModel

d) Let become collab editors
as frequent as text editors!

Huge number of ODF XML
should be taggled by source

code generation.
More flexible to create
RunTimeModl with for
different languages! Or

optimization such bitarrays
for spreadsheet cells

properties.

CURRENTLY I AM:

a) Generating Source Code for eInvoice EU standard
b) Love to elaborate the collab idea with YOU!

All text and image content in this document is licensed under the Creative Commons Attribution-Share Alike 4.0 License (unless otherwise specified). “LibreOffice”

No one can tell if LibreOffice is still en vogue
in 50 years!

But the collaboration feature is critical!

Q&A anytime!

