
Squashing the beast 
into a 60MB cage

Tor Lillqvist <tml@collabora.com>

tml, #libreoffice-dev, irc.freenode.net



Background: One single 
executable in an iOS 

app. No own shared libs



Repeat: all non-system 
code has to be in one 

executable



App Store rules: “iOS 
App binary files can be 

as large as 2 GB”



“but”



“the executable file 
cannot exceed 60 MB”



We have one test iOS 
app: TiledLibreOffice



(which is a simple viewer 
for Writer docs)



At first, the 
TiledLibreOffice 

executable was ~90MB



(optimised build, no 
debug information or 
symbols in the file)



A third had to go without 
loss of functionality



Obviously there is a lot 
of code that gets linked 

in but never will get 
called at run-time



But we don't want to 
sprinkle ugly ifdefs all 

over the place if we don't 
have to



Only in as few key 
places as possible



Largest code reduction: 
ICU data



(“Internationalisation 
Components for 

Unicode”)



Normally, ICU data is 
present as constant data 

in code segment



 When building ICU one 
has the option to use a 

data file instead



This data file needs to be 
memory-mapped in and 
passed to a single ICU 

call



Saving from ICU data: 
23MB. Still lots to go



Locale data tables



Desktop LibreOffice 
includes data for all 
locales we know of



… but no need to do that 
in an iOS app



Introduce --with-locales 
configure-time option



Restricts what locales 
have data compiled in



Even better would be to 
use data files instead of 
constant data in code



… but that can be 
complicated



Our Japanese and 
Chinese “dictionaries” 

are large



Luckily simply structured, 
so can use memory-

mapped data files 
instead



Use generated data files 
instead of generated 

code for OOXML custom 
shape presets



Split UNO components 
into smaller ones by 
refactoring factory 

methods



More aggressive 
ifdeffing-out of code 
irrelevant on mobile 

platforms



(for instance: to bypass 
code for desktop-style 
help, a11y features or 

extensions)



Charset/encoding 
conversion tables in sal: 
Optionally bin obscure 

ones



Tell compiler to optimise 
harder: -Oz



Unfortunately, somewhat 
fragile, compiler bugs?



Link-time optimisation? 
Not feasible: Linker grew 

to 40 GB in one hour 
before I lost patience



Non-issue: Unreferenced 
functions. Linker is 

smart, we use 
-dead_strip



Note: Don't make 
assumptions based on 

Linux experience



Apple's object file format, 
executable file format, 

and toolchain are 
different



How to find stuff to get 
rid of?



Inspect the linker map, 
workdir/

TiledLibreOffice.map



Use the bin/ios-mapfile-
statistics script



Oh, and after the 
squashing spree, the 

size of TiledLibreOffice 
was 43MB



Thanks to CloudOn for 
funding this work



FIN



Collabora

● Collabora Ltd.
– Leading Open Source Consultancy

– 8 years of experience. 90+ People.

● Collabora Productivity Ltd.

– Dedicated to Enterprise LibreOffice

– Provides Level-3 support (code issues) to all 
Novell / SUSE LibreOffice clients

– Architects of Microsoft OpenXML filters


