
www.CollaboraOffice.com

LibreOffice On-Line server
Initial implementation details

Tor Lillqvist
Collabora Productivity

@TorLillqvist
www.facebook.com/TorLillqvist

“For Thursday's child is Sunday's clown
For whom none will go mourning”

@CollaboraOffice

http://www.facebook.com/TorLillqvist

Goals

● Client: any modern web browser
● Server: Linux, but don't be more platform-

dependent than necessary
● Simple protocol over WebSocket
● Layered security to guard against

vulnerabilities in LibreOffice or 3rd-party
code

Basics

● WebSocket: A simple message-oriented
full-duplex protocol over TCP

● Session starts as normal HTTP but
switches immediately after handshake to
WebSocket

Basics

● LOOL server process(es) isolated from
rest of system

● One process per client session
● Isolation between client sessions

Basics

● LOOL server code uses LibreOffice
functionality through LibreOfficeKit

● No separate LibreOffice process(es)
● No LibreOffice APIs used directly in the

server
● No UNO
● Which is good

Basics

● Tiles sent to client are kept cached for a
while

● In case same parts of document viewed
later, no LibreOfficeKit instance needed

LibreOfficeKit

● A very simple C & C++ API for LibreOffice
● Exposes the core value of LibreOffice

● File format filters
● Tiled rendering (converting documents to pixels)
● Editing, selections etc

● A very simple ~header-only API – no linking
● Fully abstract: fn pointers, opaque structs etc
● No sockets opened, no plugins / simple init
● Global error messages

● Used also by Android app and loconv

But

● Most of the LibreOfficeKit functionality
used is “unstable”

● Whenever new features are added to
client-side LOOL, it likely requires
bleeding-edge LO on the server

● Not really ideal, but unavoidable

POCO

● Looked for suitable WebSocket
implementation

● Found POCO: http://pocoproject.org
● Relatively clean C++ code

● (Not that I am any connoisseur)

● Lots of utility classes for various
commonly needed functionality

POCO

● Availability in popular distros lagging
behind by several versions. Looking at
you, Debian

● Significant overlap with functionality
already in the standard C++11 library
● Presumably POCO intends to be usable also

with older C++ implementations
● But we require C++11 for LibreOffice anyway

● Obviously, prefer to use std:: and not
POCO when possible

POCO

● In addition to WebSocket, for instance
also classes for HTTP server and client
functionality, easy to use

● Using POCO omehow makes your code
look a bit like Java, in a good sense

● In general I have been quite happy with it

LOOL protocol

● Not strict request-response, but
asynchronous, full-duplex. Initially
planned to be as stateless as possible

● Mostly human-readable and verbose
● First (and usually only) line of WebSocket

messages is completely ASCII
● First line can be followed by more

(perhaps binary) data

LOOL protocol

● One document open per client session
● New session required to switch to another

document
● Tiles returned as PNG-compressed

pixmaps

Security

● Layered security
● Chroot jail for each session
● Chroot requires privileges: Use Linux

capabilities, not setuid root
● Drop capability immediately when no

longer needed
● But anyway, for production, probably want

to use some container technology

FIN

“People respected one if one didn’t talk.
They believed that one knew a great

many things and led a very exciting life.”

git://anongit.freedesktop.org/libreoffice/online

Thanks to IceWarp for funding this work

Technical questions welcome

Collabora

● Collabora Ltd.
● Leading Open Source Consultancy
● 10 years of experience. 90+ People.

● Collabora Productivity Ltd.
● Dedicated to Enterprise LibreOffice
● Provides Level-3 support (code issues) to all

Novell / SUSE LibreOffice clients
● Architects of Microsoft OpenXML filters

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

