
Rendercontext & Double-Buffering
By Jan Holesovsky

@JHolesovsky <kendy@collabora.com>

@CollaboraOffice www.CollaboraOffice.com



2 / 14 LibreOffice Conference 2015, Aarhus | Jan Holesovsky

VCL changes...

● VCL (Visual Class Library)
● LibreOffice's graphics toolkit
● ~20 year history
● Undergoing a major upgrade to allow 

modern features like OpenGL support

● Attend the Michael's VCL talk
● The rendercontext is just part of the entire 

picture



3 / 14 LibreOffice Conference 2015, Aarhus | Jan Holesovsky

When do we draw?

● Before the RenderContext rework 
started, Paint() methods were called just 
at any time
● When painting (that's OK of course)
● But also in event handlers (key press, 

mouse over effect, …)
● Triggered by timer
● Any other random time (eg. in Writer – the 

debug rectangle at the top left when layout 
finishes)



4 / 14 LibreOffice Conference 2015, Aarhus | Jan Holesovsky

Ideal state

● Painting triggered in a controlled way
● Only the Paint() methods paint
● Only VCL triggers the paint

– Consequently it can control the conditions of 
the paint – various setups / tear downs etc.

● Everything else only invalidates the area
– And VCL decides when to paint, and what

● Painting de-coupled from vcl::Window
● vcl::Window becomes more abstract



5 / 14 LibreOffice Conference 2015, Aarhus | Jan Holesovsky

RenderContext – what's that?

● RenderContext: class that implements the 
drawing
● At the moment, vcl::Window inherits from 

OutputDevice which allows all the painting at 
random points of time
– That's what we want to avoid

● Instead, RenderContext is an 
implementation of the OutputDevice
● And is passed as a param of the Paint() method
● vcl::Window paints only in Paint()



6 / 14 LibreOffice Conference 2015, Aarhus | Jan Holesovsky

Problems with direct paints

● Direct paints are problematic, because 
the render context is not available
● The code that previously called Paint() 

directly now has to use Invalidate()
● Invalidate()s are fast now – thanks to the 

Idle work

● Rework to use Invalidate() has to be 
done carefully though
● Danger of Invalidate() loops



7 / 14 LibreOffice Conference 2015, Aarhus | Jan Holesovsky

Double-buffering

● Easy once RenderContext is used 
everywhere
● vcl/source/window/paint.cxx responsible 

for the rendering in the right order
● For double-buffering, additionally:

– Buffer set up before calling paint 
(VirtualDevice)

– Then call the Paint()s (as before)
– Copy the buffer to the screen when done



8 / 14 LibreOffice Conference 2015, Aarhus | Jan Holesovsky

Rendercontext rework

● Easy parts
● Adding the RenderContext parameter (via 

clang plugin)

● Hard parts
● Everything else :-)

● Implemented by Tomaž Vajngerl and 
Miklos Vajna
● Laszlo Nemeth and others nailed down 

many bugs – thank you!



9 / 14 LibreOffice Conference 2015, Aarhus | Jan Holesovsky

Hard parts of the work

● Direct paints stateful in many cases
● Background set once in a constructor, instead of 

the Paint method

● OutputDevice cached
● Many places just try to remember the 

OutputDevice, and paint to it later

● Blinking cursor
● Currently it just inverts what is on the screen

● Size of the window vs. size of the 
rendercontext confusion



10 / 14 LibreOffice Conference 2015, Aarhus | Jan Holesovsky

Current status

● Currently
● Most of the classes modified to paint only 

in the Paint() methods
● StartCenter completely double-buffered
● Writer mostly double-buffered

– Except text cursor – needs inverting still – and 
some deep pieces

● Try yourself:
● export VCL_DOUBLEBUFFERING_FORCE_ENABLE=1



DEMO



12 / 14 LibreOffice Conference 2015, Aarhus | Jan Holesovsky

TODO

● Text cursor
● Inverting not convenient; should we have it 

as a flat rectangle? [as in Firefox etc.]

● Switch it on for StartCenter and Writer
● Cleanup

● Get rid of the code paths that are not 
needed for double-buffering

● Implement it for Calc, Impress and Base



13 / 14 LibreOffice Conference 2015, Aarhus | Jan Holesovsky

And further...

● Switch all the drawing to tiled rendering
● Paint methods would not paint the entire 

screen, but only 256x256 'tiles'

● Currently used on Android & LibreOffice 
On-Line
● Adding Desktop would make it one code 

path again
● Would allow extremely fast OpenGL 

scrolling / panning / zoom



14 / 14 LibreOffice Conference 2015, Aarhus | Jan Holesovsky

Questions?

Thanks for listening!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

